Refine your search:     
Report No.
 - 
Search Results: Records 1-1 displayed on this page of 1
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Oral presentation

A New approach to extracting biofilm from environmental plastics using ultrasound-assisted syringe treatment for isotopic analyses

Battulga, B.; Atarashi-Andoh, Mariko; Koarashi, Jun

no journal, , 

Plastic debris has been recognized as one of the carriers of hazardous substances in the aquatic ecosystem due to its ubiquitous distribution and potential interaction with pollutants through developed biofilms. In this study, we aimed to extract biofilms from the environmental plastics using a newly developed extraction method and to determine the concentration of radiocesium ($$^{137}$$Cs) and stable isotope ratios ($$delta$$$$^{13}$$C and $$delta$$$$^{15}$$N) in the extracted biofilm samples. Visible plastics were collected from the mouths of coastal rivers in Ibaraki prefecture, Japan, and applied to the extraction procedures. After plastic and biofilm separation with ultrasonication, biofilm samples were collected by the two ways: freeze-drying (15.5-44.4 mg); and freeze-drying after syringe treatment (14.5-65.4 mg). The XRD diffractograms of biofilm samples confirmed that biofilms obtained by freeze-drying only were still heterogeneous and the agglomerations of organic substances, mineral particles, and small microplastics (MPs, $$<$$ 1 mm). The results also demonstrated that biofilm extraction was achieved by syringe treatment separating the mineral and small MPs particles, resulting in homogenous biofilms from the surface of plastics. Preliminarily results of $$^{137}$$Cs activity concentrations in heterogenous (ranging from 0.22 to 0.54 Bq g$$^{-1}$$) and homogenous (0.82$$pm$$0.04 Bq g$$^{-1}$$) biofilm samples revealed that MPs serve as a carrier for $$^{137}$$Cs in the coastal river environment mediated by developed biofilms.

1 (Records 1-1 displayed on this page)
  • 1